5/8/2012: Final exam

Your Name:

- Try to answer each question on the same page as the question is asked. If needed, use the back or the next empty page for work. If you need additional paper, write your name on it.
- Do not detach pages from this exam packet or unstaple the packet.
- All functions f if not specified otherwise can be assumed to be smooth so that arbitrary many derivatives can be taken.
- Please write neatly. Answers which are illegible for the grader can not be given credit.
- Except for multiple choice problems, give computations.
- No notes, books, calculators, computers, or other electronic aids are allowed
- You have 180 minutes time to complete your work.

1		20
2		10
3	10	
4		10
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11		10
12	10	
13	10	
Total:		140

Problem 1) TF questions (20 points). No justifications are needed
1)

2)
3)
4)
5) \square
6)
8) \square
9) \square
10) \square
11)

2)

13) \square
14)

15)
16)

17)

18)

19)

20) \square

The definite integral $\int_{0}^{2 \pi} \sin ^{2}(5 x) d x$ is zero.
The intermediate value theorem assures that the function $\exp (\sin (x))$ has a root in the interval $(0,2 \pi)$.
$\frac{d}{d x} \cos (4 x)=-4 \sin (4 x)$.
If $f^{\prime \prime}(1)<0$ then 1 is a local maximum of f.
The derivative of $1 / x$ is $\log (x)$ for all $x>0$.
The limit of $\sin (3 x) /(5 x)$ for $x \rightarrow 0$ exists and is equal to $3 / 5$.
The function $\left(e^{t}-1\right) / t$ has the limit 1 as t goes to zero.
The derivative of $f(f(x))$ is $f^{\prime}\left(f^{\prime}(x)\right)$ for any differentiable function f.
A monotonically increasing function f has no point x, where $f^{\prime}(x)<0$.
The function $f(x)=\exp \left(-x^{2}\right)$ has an inflection point x somewhere on the real line.

The function $f(x)=\left(1-x^{3}\right) /(1+x)$ has a limit for $x \rightarrow-1$.
If we know the marginal cost for all quantities x as well as the total cost for $x=1$ we know the total cost for all x.
The function f which satisfies $f(x)=0$ for $x<0$ and $f(x)=e^{-x}$ for $x \geq 0$ is a probability density function
The differentiation rule $(f \cdot g)^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$ holds for all differentiable functions f, g.

Hôpital's rule assures that $\cos (x) / \sin (x)$ has a limit as $x \rightarrow 0$.
A Newton step for the function f is $T(x)=x-\frac{f(x)}{f^{\prime}(x)}$.
The family of functions $f_{c}(x)=c x^{2}$ where c is a parameter has a catastrophe at $x=0$.
The fundamental theorem of calculus implies $\int_{-x}^{x} f^{\prime}(t) d t=f(x)-f(-x)$ for all differentiable functions f.
If f is a smooth function for which $f^{\prime \prime}(x)=0$ everywhere, then f is constant.
The function $f(x)=\sin (x) /(1-\cos (x))$ can be assigned a value $f(0)$ such that $f(x)$ is continuous at 0

We name some important concepts in this course. To do so, please complete the sentences with one or two words. Each question is one point.

$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ is called the	of f.
$f^{\prime}(x)=0, f^{\prime \prime}(x)>0$ implies that x is a	of f.
The sum $\frac{1}{n}[f(0)+f(1 / n)+f(2 / n)+\ldots+$ $f((n-1) / n)+f(1)]$ is called a	sum.
If $f(0)=-3$ and $f(4)=8$, then f has a root on the interval $(0,4)$ by the	theorem.
There is a point $x \in(0,1)$ where $f^{\prime}(x)=$ $f(1)-f(0)$ by the	theorem.
The expansion rate $r^{\prime}(t)$ can be obtained from $d / d t V(r(t))=-5$ by the method of	rates.
The anti derivative $\int_{-\infty}^{x} f(t) d t$ of a probability density function f is called the	function.
A point x for which $f(x)=0$ is called a	of f.
A point x for which $f^{\prime \prime}(x)=0$ is called an	of f.
At a point x for which $f^{\prime \prime}(x)>0$, the function is called	up.

a) (4 points) Find the relation between the following functions:

function f	function g	$f=g^{\prime}$	$g=f^{\prime}$	none
$\log \|\sin (x)\|$	$\cot (x)$			
$1 / \cos ^{2}(x)$	$\tan (x))$			
x^{5}	$5 x^{4}$			
$1 / x^{2}$	$-1 / x$			
$\sin (\log (x))$	$\cos (\log (x)) / x$			

b) (3 points) Match the following functions (a-d) with a choice of anti-derivatives (1-4).

Function a)-d)	Fill in 1)-4)
graph a)	
graph b)	
graph c)	
graph d)	

a)
b)
c)

2)
3)
4)
c) (3 points) Find the limits for $x \rightarrow 0$

Function f	$\lim _{x \rightarrow 0} f(x)$
$x /\left(e^{2 x}-1\right)$	
$\left(e^{2 x}-1\right) /\left(e^{3 x}-1\right)$	
$\sin (3 x) / \sin (5 x)$	

Find the area of the shield shaped region bound by the two curves $1 /\left(1+x^{2}\right)$ and $x^{2}-1$.

Problem 5) Volume computation (10 points)
Did you know that there is a scaled copy of the liberty bell on the campus of the Harvard business school? Here we compute its volume. Find the volume if the rotationally symmetric solid if the radius $r(z)$ at height z is $r(z)=8-(z-1)^{3}$ and the height z of the bell is between 0 and 3 .

Problem 6) Improper integrals (10 points)
a) (5 points) Find the integral or state that it does not exist

$$
\int_{1}^{\infty} \frac{1}{x^{4}} d x
$$

b) (5 points) Find the integral or state that it does not exist

$$
\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x
$$

Problem 7) Extrema (10 points)

The Harvard stadium has a track which encloses a rectangular field of dimensions x, y. The circumference of the track is $400=2 \pi y+2 x$ and is fixed. We want to maximize the area $x y$ for a play field. Which x achieves this?
x

Problem 8) Integration by parts (10 points)

Problem 9) Substitution (10 points)

a) (3 points) Solve the integral $\int e^{x^{2}} 2 x d x$.
b) (3 points) Solve the integral $\int 2 x \log \left(x^{2}\right) d x$.
c) (4 points) Find the integral $\int e^{-2 e^{x}} e^{x} d x$.

Find the antiderivative:

$$
\int(x-1)^{4} \exp (x+1) d x
$$

a) (5 points) Find the definite integral

$$
\int_{1}^{5} \frac{1}{(x-4)(x-2)} d x
$$

b) (5 points) Find the indefinite integral

$$
\int \frac{1}{(x-1)(x-3)(x-5)} d x
$$

Problem 11) Related rates (10 points)

The coordinates of a car on a freeway intersection are $x(t)$ and $y(t)$. They are related by

$$
x^{7}+y^{7}=2 x y^{2} .
$$

We know $x^{\prime}=3$ at $x=1, y=1$. Find y^{\prime}.

Problem 12) Various integration problems (10 points)
Find the anti-derivatives of the following functions:
a) (2 points) $f(x)=\sin ^{5}(x) \cos (x)$.
b) (3 points) $f(x)=\frac{1}{x^{2}+1}+\frac{1}{x^{2}-1}$.
c) (2 points) $f(x)=\sqrt{1-x^{2}}+\frac{1}{\sqrt{1-x^{2}}}$.
d) (3 points) $f(x)=\log (x)+\frac{1}{\log (x)}$.
a) (5 points) We know the total cost $F(x)=-x^{3}+2 x^{2}+4 x+1$ for the quantity x. In order to find the positive break-even point x satisfying $f(x)=g(x)$, where $g(x)=F(x) / x$ is the total cost and $f(x)=F^{\prime}(x)$ is the marginal cost, we do - how sweet it is - find the maximum of the average cost $g(x)=F(x) / x$. Find the maximum!
b) (5 points) We know the "velocity", "acceleration" and "jerk" as the first second and third derivative of position. The fourth, fifth and sixth derivatives of position as a function of time are called "snap", "crackle" and "pop" according to characters used in a cereal add. Assume we know the snap $x^{\prime \prime \prime \prime}(t)=t$. Find $x(t)$ satisfying $x(0)=x^{\prime}(0)=x^{\prime \prime}(0)=0, x^{\prime \prime \prime}(0)=0$.

